xSAK team Index du Forum
xSAK team
La team xSAK, tire son nom de Style And Kiss. C'est également une team mixte qui se déploie sur MW3 et BLACK OPS.
xSAK team Index du ForumFAQRechercherS’enregistrerConnexion

:: Htri Tutorial Pdf Free Download ::

Poster un nouveau sujet   Répondre au sujet    xSAK team Index du Forum -> Palmarès -> Hall of Fame
Sujet précédent :: Sujet suivant  
Auteur Message

Hors ligne

Inscrit le: 04 Avr 2016
Messages: 103
Localisation: Milano

MessagePosté le: Mer 26 Oct - 17:38:51 (2016)    Sujet du message: Htri Tutorial Pdf Free Download Répondre en citant

Htri Tutorial Pdf Free Download > shorl.com/kynedranodagro

New Content Home Forums Industrial Forum Process Heat Transfer Student Forum Refining Forum Simulation Forum Relief Devices Forum Tank Venting Forum Sign In Register Quick Nav Members Calendar Status Updates Blogs ChE Express Community Blog Ankur's Blog Articles Separation Technology Calcs and Tips Fluid Flow Heat Transfer Maint/Repair Utilities Safety Bulk Solids Processes Energy Other Topics For Students Physical Properties File Library Excel Spreadsheets Article Supplements Hall of Fame ChE Plus FAQ Site FAQ Technical FAQ Search FB More . Back to top #2 Fr3dd Fr3dd Gold Member Members 95 posts Posted 16 October 2012 - 10:17 AM Hello Omechem, The software itself has a very extensive and useful manual. You may have to register before you can post: click the register link above to proceed. Mark Community Read Forums Members Blogs Pages Downloads Store Mark all as read Help Community Forum Software by IP.Board 3.4.7 . Topics covered include basic methods for single-phase pressure drop and heat transfer, condensation, boiling, two-phase flow, fouling, flow-induced vibration, and design guidelines for shell-and-tube, air-cooled, and non-tubular exchangers. 403 Forbidden..

.. Shear Featured File 3-Stage Propane Ref Performance New Blog Entry Side Stream Filtration Rate for Towers- posted in Ankur's blog How To Learn Htri Xchanger Suit 6,if Anybody Having Learning Manual Pl Started by omechem, Oct 16 2012 06:47 AM This topic has been archived. These links do not access the actual Design Manual content.Volume A Table of ContentsA1 Purpose and organizationA1.1 General descriptionA1.2 Suggested usesA1.3 OrganizationA2 Unit conversionsA2.1 DefinitionsA2.2 ConventionsVolume B Table of ContentsB1 Principles of heat transferB1.1 Principles of heat transfer processesB1.2 Overall heat transfer coefficient and supporting calculationsB1.2.1 Fourier’s Law conceptsB1.2.2 Driving force and resistance conceptB1.2.3 Derivation of overall heat transfer coefficient, UB1.2.4 Derivation of tube wall temperature, TwB1.2.5 Average bulk temperatureB1.3 Mean temperature differenceB1.3.1 Exact and integrated solutionB1.3.2 Flow arrangementsB1.3.3 Graphical solutionsB1.3.4 Mean temperature difference graphs for shell-and-tube exchangersB1.3.5 Mean temperature difference graphs for crossflow arrangementsB1.3.6 Effective overall mean temperature differenceB1.4 NomenclatureB2 Single-phase pressure dropB2.1 Pressure drop inside conduits of constant cross sectionB2.1.1 Flow inside tubesB2.1.2 Flow inside tubes with twisted tape insertsB2.1.3 Flow inside tubes with internal finsB2.1.4 In annuliB2.1.5 Axial flow in tube bundles with rod-type tube supportsB2.2 Pressure drop across plain tube banksB2.2.1 Basic geometryB2.2.2 Isothermal flowB2.2.3 Nonisothermal flowB2.2.4 Calculated example, plain tubesB2.3 Pressure drop across low-finned tube banksB2.3.1 Basic geometryB2.3.2 Friction factor correctionB2.3.3 Nonisothermal correctionB2.3.4 Pressure dropB2.3.5 Calculated example, low-finned tubes, 19 fins/in.B2.4 Pressure drop across high-finned tube banksB2.4.1 Definitions and limitationsB2.4.2 Friction factor definitionB2.4.3 General correlationB2.4.4 Nonequilateral staggered layoutsB2.4.5 Nonsquare inline layoutsB2.4.6 Special finned tubesB2.4.7 ESCOA correlations for pressure dropB2.5 Pressure drop in plate-and-frame exchangersB2.5.1 Typical plate-and-frame configurationB2.5.2 Pressure drop estimation methodB2.6 Pressure drop in spiral plate heat exchangersB2.6.1 Pressure drop estimation methodB2.6.2 Range of data and accuracyB2.7 Pressure drop in bendsB2.7.1 Secondary flowB2.7.2 Classification of bendsB2.7.3 Loss coefficient methodsB2.8 Pressure drop across tube bundles with continuous finsB2.8.1 Pressure drop method for vaporsB2.8.2 Pressure drop estimation method for liquidsB2.9 Pressure drop in plate-fin heat exchangersB2.9.1 GeometryB2.9.2 Plain finsB2.9.3 Perforated finsB2.9.4 Serrated finsB2.9.5 Wavy finsB2.9.6 LimitsB2.10 NomenclatureB3 Single-phase heat transferB3.1 Heat transfer inside conduits of constant cross sectionB3.1.1 Inside plain tubesB3.1.2 Inside tubes with twisted tape insertsB3.1.3 Inside tubes with internal finsB3.1.4 In annuliB3.1.5 Axial flow in tube bundles with rod-type tube supportsB3.2 Heat transfer, plain tube banksB3.2.1 Basic correlationB3.2.2 Curve fit equation for (ji)10B3.2.3 Tuberow correctionB3.2.4 Alternative form for turbulent flowB3.2.5 Baffled heat exchanger window heat transferB3.2.6 Calculated example, plain tubesB3.3 Heat transfer, low-finned tube banksB3.3.1 Basic geometry low-finned tubesB3.3.2 Heat transfer, j-factor correlationB3.3.3 Fin efficiencyB3.4 Heat transfer, high-finned tube banksB3.4.1 Definitions and limitationsB3.4.2 Area calculationsB3.4.3 Colburn j-factor definitionB3.4.4 Smooth-finned tubes in staggered layoutsB3.4.5 Segmented-finned tubes in staggered layoutsB3.4.6 Finned tubes in inline layoutsB3.4.7 Special finned tubesB3.4.8 Fin efficiencyB3.4.9 Fin bond resistanceB3.4.10 ESCOA correlations for heat transferB3.5 Heat transfer in plate-and-frame exchangersB3.5.1 General informationB3.5.2 Typical plate-and-frame configurationB3.5.3 Heat transfer estimation modelB3.5.4 Example calculation, waste heat recovery plate heat exchangerB3.5.5 Effect of flow distribution on heat transferB3.6 Heat transfer in spiral plate heat exchangersB3.6.1 Heat transfer estimation methodB3.6.2 Range of data and accuracyB3.7 Heat transfer across tube bundles with continuous finsB3.7.1 Heat transfer method for vaporsB3.7.2 Heat transfer method for liquidsB3.8 Heat transfer in plate-fin heat exchangersB3.8.1 Plain finsB3.8.2 Perforated finsB3.8.3 Serrated finsB3.8.4 Wavy finsB3.8.5 Limits and correctionsB3.8.6 Fin efficiencyB3.9 NomenclatureB4 CondensationB4.1 Principles of condensationB4.1.1 Filmwise condensationB4.1.2 Flow regimesB4.1.3 Condensate film heat transfer coefficientsB4.1.4 Vapor-phase heat transfer coefficientB4.1.5 DesuperheatingB4.1.6 SubcoolingB4.1.7 Mean temperature differenceB4.1.8 Incrementation and short-cut proceduresB4.2 Condensation of pure vapors inside vertical tubesB4.2.1 Gravity-controlled flowB4.2.2 Shear-controlled flowB4.2.3 Annular-mist flowB4.2.4 Heat transfer coefficient selectionB4.3 Condensation of pure vapors inside horizontal tubesB4.3.1 Shear-controlled flow, annular patternB4.3.2 Shear-controlled flow, mist patternB4.3.3 Gravity-controlled flow, wave and stratified patternsB4.3.4 Transition between annular and semi-annular flowB4.3.5 Transition between shear- and gravity-controlled flowB4.3.6 Slug and plug flow patternsB4.3.7 Heat transfer coefficient selectionB4.4 Condensation of pure vapors outside horizontal plain tube bundlesB4.4.1 Gravity-controlled flowB4.4.2 Shear-controlled flowB4.4.3 Slug-plug flowB4.4.4 Heat transfer coefficient selectionB4.5 Condensation of pure vapors outside baffled vertical plain tube bundlesB4.5.1 Flow regime considerationsB4.5.2 Gravity-controlled flowB4.5.3 Shear-controlled flowB4.6 Condensation of mixed vapors and vapor-gas mixturesB4.6.1 TheoryB4.6.2 Resistance Proration MethodB4.6.3 Composition Profile MethodB4.6.4 Methods for tubeside condensationB4.6.5 Methods for shellside condensationB4.7 Condensation on finned tubes in horizontal tube bundlesB4.7.1 Gravity-controlled flowB4.7.2 Shear-controlled flowB4.7.3 Heat transfer coefficient selectionB4.7.4 Fin efficiencyB4.7.5 Mixtures and non-condensablesB4.7.6 Rose-Briggs theoretical finned tube methodsB4.8 SubcoolingB4.8.1 Vertical condensersB4.8.2 Horizontal condensersB4.9 DesuperheatingB4.9.1 Dry-wall desuperheatingB4.9.2 Wet-wall desuperheatingB4.9.3 Wall temperature estimationB4.10 Condensation of immiscible mixturesB4.10.1 Heat transfer methodB4.10.2 Heat transfer calculation proceduresB4.10.3 Recommended methodsB4.11 Direct contact heat transferB4.11.1 Methods used for gas coolersB4.11.2 Direct contact condensersB4.11.3 Application of theoretical studiesB4.12 Fogging condensationB4.12.1 Fogging principlesB4.12.2 Determination of supersaturationB4.12.3 Critical supersaturationB4.13 Reflux condensationB4.13.1 Tubeside reflux condensationB4.13.2 Shellside reflux condensationB4.14 Enhanced condensationB4.14.1 Enhanced condensation using tubeside insertsB4.14.2 Condensation in micro-finned tubesB4.15 Dehumidification of gases flowing outside high-finned tube bundlesB4.15.1 Mass Transfer MethodB4.15.2 Simplified RPMB4.15.3 ARI MethodB4.16 Condensation heat transfer coefficient in plate-and-frame exchangersB4.16.1 Condensation of pure vaporsB4.16.2 Condensation of mixturesB4.17 Condensation heat transfer in plate-fin heat exchangersB4.17.1 General correlationsB4.17.2 Upflow/horizontal condensationB4.17.3 Downflow condensationB5 BoilingB5.1 Boiling process principlesB5.1.1 IntroductionB5.1.2 Pool boilingB5.1.3 Flow boilingB5.1.4 Onset of nucleate boilingB5.2 Nucleate boiling outside single horizontal tubesB5.2.1 Maximum heat flux, q1 maxB5.2.2 Nucleate boiling coefficient, hnbB5.2.3 Natural convection heat transfer coefficient, hncB5.3 Flow boiling inside tubesB5.3.1 IntroductionB5.3.2 Maximum heat flux and vapor fractionB5.3.3 Wet-wall heat transfer methodsB5.3.4 Dry-wall heat transfer methodsB5.3.5 Twisted tape insertsB5.3.6 Microfin tubesB5.4 Flow boiling outside horizontal tube bundlesB5.4.1 IntroductionB5.4.2 Wet-wall heat transfer methodsB5.4.3 Dry-wall heat transfer methodsB5.5 Boiling with high vapor-phase resistanceB5.5.1 IntroductionB5.5.2 BackgroundB5.5.3 Recommended relationsB5.6 Film and transition boiling outside single horizontal tubesB5.6.1 Film boiling minimum heat flux, qminB5.6.2 Minimum temperature difference for fully developed film boiling, DTq minB5.6.3 Film boiling heat transfer coefficient, hfbB5.6.4 Transition boiling heat transfer coefficient, htbB5.7 Falling film evaporation inside vertical tubesB5.7.1 IntroductionB5.7.2 General configurationB5.7.3 Liquid distributionB5.7.4 Tubeside heat transfer coefficientsB5.7.5 Film breakdownB5.7.6 FloodingB5.8 Flow boiling heat transfer coefficient in plate-and-frame exchangersB5.8.1 Liquid film at wallB5.8.2 Partial or complete dry wallB5.9 Flow boiling heat transfer in plate-fin heat exchangersB5.9.1 Convective boilingB5.9.2 Nucleate boilingB6 Two-phase flowB6.1 Basic relationshipsB6.1.1 Homogeneous flow modelB6.1.2 Separated flow modelB6.2 Flow regimesB6.2.1 Horizontal flowB6.2.2 Vertical flowB6.3 Flow limitationsB6.3.1 FloodingB6.3.2 EntrainmentB6.3.3 Critical flowB6.3.4 Example calculationB6.4 Pressure dropB6.4.1 General equationB6.4.2 Static headB6.4.3 MomentumB6.4.4 FrictionB6.4.5 Pressure drop across restrictionsB6.4.6 Boiling in plate-and-frame exchangersB6.4.7 Pressure drop in bendsB6.4.8 Pressure drop in plate-fin exchangersB6.5 Heat transferB6.5.1 Convective heat transfer coefficient for liquid filmB6.5.2 Effects of boiling and condensingB6.5.3 Effects of vapor-phase resistanceB6.5.4 Feed-effluent exchangersB6.6 Liquid-liquid two-phase systemsB6.6.1 Effective viscosity of immiscible liquid-liquid emulsionsB6.6.2 Heat transfer and pressure drop with immiscible liquid phasesB6.7 Solid-liquid two-phase systemsB6.7.1 General recommendationsB6.7.2 Heat transfer and pressure drop calculationsB6.7.3 Equipment selectionB6.8 Bitumen-water slurriesB6.8.1 IntroductionB6.8.2 General recommendationsB6.8.3 Pressure drop calculationsB6.8.4 Heat transfer calculationsVolume C Table of ContentsC1 Practical aspects of heat exchanger designC2 Heat transfer equipment typesC2.1 Construction data and geometry parametersC2.1.1 IntroductionC2.1.2 Tube bundle design characteristicsC2.2 Condenser typesC2.2.1 IntroductionC2.2.2 Shellside condensersC2.2.3 Tubeside condensersC2.3 Reboiler typesC2.3.1 IntroductionC2.3.2 Kettle reboilersC2.3.3 Internal reboilersC2.3.4 Vertical thermosiphon reboilersC2.3.5 Horizontal thermosiphon reboilersC2.3.6 Pump-through reboilersC2.3.7 Falling film reboilersC2.4 Gasketed plate heat exchangers: Construction and operational principlesC2.4.1 IntroductionC2.4.2 ConstructionC2.4.3 Construction materials and design codesC2.4.4 Plate arrangements and other basic design principlesC2.4.5 General applicationsC2.5 Air-cooled heat exchanger construction practicesC2.5.1 IntroductionC2.5.2 Description of air-cooled heat exchangersC2.5.3 Air-cooled heat exchanger configurationsC2.5.4 Tube bundlesC2.5.5 Axial flow fansC2.5.6 Plenum, fan deck, and fan ring constructionC2.5.7 Motor-fan drivesC2.5.8 Air flow in forced-draftC2.5.9 Inert accumulation in air-cooled condensersC2.6 Heat exchanger selectionC2.6.1 IntroductionC2.6.2 Important process parametersC2.6.3 Important geometry paramentersC2.6.4 TubesC2.6.5 Selection guidesC2.7 NomenclatureC3 Shell-and-tube single-phase flowC3.1 Shellside heat transfer and pressure drop by the Stream Analysis MethodC3.1.1 IntroductionC3.1.2 Flow distribution equationsC3.1.3 Pressure drop calculationsC3.1.4 Heat transfer calculationsC3.1.5 Mean temperature difference profile,dC3.1.6 Probable accuracyC3.1.7 Shellside heat transfer and pressure drop, helical bafflesC3.1.8 Disk-and-doughnut bafflesC3.1.9 CrossbafflesC3.1.10 Shellside flow areasC3.1.11 Number of tuberows crossedC3.1.12 Shell exit flow areasC3.1.13 Shell entrance flow areasC3.1.14 Shellside heat transfer and pressure drop, strip bafflesC3.2 Pressure drop in tubeside nozzles and channelsC3.3 Pressure drop in shellside nozzlesC3.3.1 IntroductionC3.3.2 Standard nozzlesC3.3.3 Impingement platesC3.3.4 Annular distributorsC3.3.5 Outlet distributorC3.4 Longitudinal baffle leakage: F, G, H shellsC3.4.1 IntroductionC3.4.2 Thermal leakageC3.4.3 Physical leakageC3.4.4 Effect of physical leakage on heat transferC3.5 Exchanger weight estimationC3.5.1 BundleC3.5.2 Shell bodyC3.5.3 TEMA stationary headsC3.5.4 TEMA rear headsC3.5.5 Tubeside nozzlesC3.5.6 Shellside nozzlesC3.5.7 Longitudinal baffleC3.5.8 Total dry weightC3.5.9 Weight filled with waterC3.6 NomenclatureC4 CondensersC4.1 Condenser designC4.1.1 Selection of condenser typeC4.2 Vertical tubeside condensersC4.2.1 IntroductionC4.2.2 Temperature profilesC4.2.3 Flow regimesC4.2.4 Condensing-side heat transferC4.2.5 Condensing-side pressure dropC4.2.6 Coolant heat transfer and pressure dropC4.3 Horizontal tubeside condensersC4.3.1 IntroductionC4.3.2 Temperature profilesC4.3.3 Flow regimesC4.3.4 Condensing-side heat transferC4.3.5 Condensing-side pressure dropC4.3.6 Effect of inclinationC4.3.7 Coolant heat transfer and pressure dropC4.4 Horizontal shellside plain-tube condensersC4.4.1 IntroductionC4.4.2 Temperature profilesC4.4.3 Flow regimesC4.4.4 Condensing-side heat transferC4.4.5 Condensing-side pressure dropC4.4.6 Condensate drainageC4.4.7 VentingC4.4.8 Coolant heat transfer and pressure dropC4.5 Vertical shellside plain-tube condensersC4.5.1 IntroductionC4.5.2 Temperature profilesC4.5.3 Flow regimesC4.5.4 Condensing-side heat transferC4.5.5 Condensate drainageC4.5.6 VentingC4.5.7 Coolant heat transfer and pressure dropC4.6 Condensation in finned annulus of double-pipe heat exchangerC4.7 NomenclatureC5 Reboilers and vaporizersC5.1 Kettle and internal reboiler designC5.1.1 IntroductionC5.1.2 Maximum heat fluxC5.1.3 Nucleate regime, average boiling heat transfer coefficient, habC5.1.4 Film boilingC5.1.5 Expected accuracyC5.1.6 General design considerationsC5.1.7 Rating curve calculation procedureC5.1.8 Kettle sizing and liquid entrainmentC5.1.9 Bundle circulationC5.2 Horizontal shellside thermosiphon reboilersC5.2.1 IntroductionC5.2.2 Maximum heat fluxC5.2.3 Average boiling heat transfer coefficient, habC5.2.4 Heating medium heat transfer coefficientsC5.2.5 Vapor fraction estimationC5.3 Vertical tubeside thermosiphon reboilersC5.3.1 IntroductionC5.3.2 Design heat flux, qdesC5.3.3 Average boiling heat transfer coefficient, habC5.3.4 Circulation velocity and vapor fraction estimationC5.3.5 Correction for subcooled liquid zoneC5.3.6 Mist flow vapor fractionC5.3.7 Film boiling designC5.3.8 Heating medium coefficient, hhC5.3.9 Flow regimesC5.3.10 Thermosiphon reboiler pipingC5.3.11 Two-phase flow instabilities in vertical thermosiphon reboilersC5.4 Vertical shellside thermosiphon reboilersC5.4.1 IntroductionC5.4.2 Circulation velocity and vapor fraction estimationC5.4.3 Recommendations for good flow distributionC5.4.4 Additional information on design and operation of waste heat boilersC5.5 Forced-flow reboilersC5.5.1 IntroductionC5.5.2 Flow rate and fraction vaporizedC5.5.3 Design heat fluxC5.5.4 Average boiling heat transfer coefficient, habC5.5.5 Tubeside flow distributionC5.5.6 Shellside forced-flow boilingC5.6 Falling film reboilers/evaporatorsC5.6.1 IntroductionC5.6.2 Flow distributionC5.6.3 Heat transfer coefficient and pressure dropC5.6.4 Film breakdownC5.7 Special design considerationsC5.7.1 IntroductionC5.7.2 FoulingC5.7.3 Very wide boiling range mixturesC5.7.4 Operation near critical pressureC5.7.5 Operation in deep vacuumC5.7.6 SpargingC5.7.7 Very low DTC5.7.8 Very high DTC5.7.9 Shellside flow separation problemsC5.8 Effective mean temperature differences in reboilersC5.8.1 IntroductionC5.8.2 Kettle or internal reboilersC5.8.3 Vertical thermosiphon reboilersC5.8.4 Horizontal thermosiphon reboilersC5.8.5 Temperature profile calculationC5.9 Spiral plate thermosiphon reboilersC5.10 Boiling in finned annulus of double-pipe heat exchangerC5.11 NomenclatureC6 FoulingC6.1 Fouling characteristicsC6.1.1 Types of fouling mechanismsC6.1.2 Fouling categories definedC6.1.3 General behavior of fouling processesC6.1.4 Application to HTRI softwareC6.2 Cooling water fouling predictive modelC6.2.1 Original HTRI empirical correlationC6.2.2 Fouling model equationC6.2.3 Evaluation of asymptotic fouling resistanceC6.2.4 Evaluation of fouling-time curveC6.2.5 Application of constant heat flux modelC6.2.6 Typical asymptotic fouling curvesC6.3 Fouling deposit characteristicsC6.3.1 Characteristics of water fouling depositsC6.3.2 Conductivity of fouling depositsC6.4 Fouling with single-phase heavy organicsC6.4.1 Common misconceptionsC6.4.2 Threshold studiesC6.4.3 Surface and bulk temperature effectsC6.4.4 Velocity effectsC6.4.5 Bulk composition and chemistryC6.4.6 Effect of salt in crudeC6.4.7 Effect of surface conditionC6.4.8 Flash drumC6.5 Fouling in plate heat exchangersC6.5.1 Effects of velocity and shear stressC6.5.2 Experimental data and recommended valuesC6.6 Fouling in reboilersC6.6.1 Guidelines for minimizing foulingC6.6.2 Start-up and controlC6.7 Analysis of crude oil fouling mechanismsC6.7.1 Asphaltene adhesionC6.7.2 CokingC6.7.3 CorrosionC6.7.4 CrystallizationC6.7.5 Insoluble gum formationC6.7.6 Sedimentation foulingC6.8 Shear stress in shell-and-tube heat exchangersC6.8.1 Tubeside shear stressC6.8.2 Shellside shear stressC6.8.3 Shellside longitudinal flow shear stressC6.9 NomenclatureC7 Flow-induced vibrationC7.1 Flow-induced vibration analysisC7.1.1 IntroductionC7.1.2 Vibration causes and effectsC7.1.3 Natural frequency of tubesC7.1.4 Acoustic frequency of shellC7.1.5 Shellside velocities for vibration analysisC7.1.6 Vibration prediction methodsC7.2 Program resultsC7.2.1 IntroductionC7.2.2 Interpretation of vibration analysis resultsC7.3 Design improvementsC7.3.1 IntroductionC7.3.2 Tube vibration damageC7.3.3 Acoustic vibration noiseC7.3.4 Other design considerationsC7.4 Troubleshooting and corrective actionsC7.5 NomenclatureSearch:SearchTechnical PublicationsResearch ReportsQ ArticlesDesign ManualOther PublicationsGet More InformationGain access to HTRI software, research, & technology.More InformationTraining & ConferencesLearn more about upcoming HTRI events.See Upcoming EventsOnsite TrainingInterested in training at your site? Let us know!Request a QuoteAboutHistoryNewsGovernanceCareersPrivacy PolicyTerms of UseProducts & ServicesHTRI Xchanger SuiteTrainingProprietary TestingSoftwareKnowledge BaseDesign ManualTechnical PublicationsQ ArticlesWebinarsCurrent MembersContact UsTechnical SupportBecome a MemberSales Inquiries Heat Transfer Research, Inc. Quick Navigation Site Areas Settings Private Messages Subscriptions Who's Online Search Forums Forums Home Forums Petroleum Industry Zone Safety And Environment Geology & Exploration Drilling And Workover Reservoir Oil And Gas Production Oil And Gas Process Petroleum Refining Petrochemical Laboratory Measurements Instrumentation & Control Mechanical Engineering Planning & Project Management Pipeline And Fluid Flow Electrical & Power Engineering Materials Science &Corrosion Civil & Structural Engineering Engineering Certificates General Engineering Engineering Spreadsheets & Presentations Quality management Engineering Software Tutorial Process Simulation Community Pipeline Simulation Community General Zone Forums development Jobs Self Improvement Computer & Internet Foreign Languages Free Zone Petroleum Club Engineering Programming Forum by Your Languages . If there's any book or website, I'm sure that one of our colleagues here will share it with you. .. It provides the basis for understanding HTRI software results and contains references to research reports for detailed study.To view simple tables of content for each volume, click the links below. This electronic document summarizes calculation methods in HTRI software, provides design recommendations, and offers practical design tips. All rights reserved.Loading.

mitscherlich the inability to mourn pdf downloadglimpses of world history pdf e-books free download novelsl occhio del male pdf downloadhebrew bible in english pdf free downloadof bread blood and the hunger games pdf downloaddownload the black gryphon pdf writerelectron beam evaporation technique pdf downloadsystema martial art pdf downloadformas societarias en el peru pdf downloaddownload pdf file icon not displayed

Revenir en haut

MessagePosté le: Mer 26 Oct - 17:38:51 (2016)    Sujet du message: Publicité

PublicitéSupprimer les publicités ?
Revenir en haut
Montrer les messages depuis:   
Poster un nouveau sujet   Répondre au sujet    xSAK team Index du Forum -> Palmarès -> Hall of Fame Toutes les heures sont au format GMT + 2 Heures
Page 1 sur 1

Sauter vers:  

Index | Panneau d’administration | créer son forum | Forum gratuit d’entraide | Annuaire des forums gratuits | Signaler une violation | Conditions générales d'utilisation
WorkStation[fusion] © theme by larme d'ange 2006
Powered by phpBB © 2001, 2005 phpBB Group
Traduction par : phpBB-fr.com